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Abstract. The modification of a technique that was developed to study time 
correlations in lattice-gas cellular automata to facilitate the numerical simulation of 
chain molecules is described. As an example, the calculation of the excess chemical 
potential of an ideal polymer in a dense colloidal suspension is discussed. 

One of the surprising findings of computer simulation studies of very simple model 
systems, is that  a great variety of ordered or partially ordered phases can be induced 
by pure-excluded volume effects. More than 30 years ago, Alder and Wainwright [l] 
showed that a system of hard spheres undergoes a first-order phase transition from 
the fluid to  the crystalline solid phase. More recently, it was shown that hard-core 
interactions could also give rise to  a number of liquid crystalline phases. This is not to 
say that other aspects of the intermolecular interactions in liquid crystals are always 
unimportant. On the contrary, they are as important as, say, van der Waals forces are 
for the cohesion of an argon crystal. But the computer simulations strongly suggest 
that  the structure of lyotropic nematics [2], smectics [3] and columnar phases [4] is 
predominantly determined by excluded-volume effects. 

I t  would, however, be a serious mistake to extrapolate this finding and assume 
that excluded-volume effects are always the most important factor determining the 
structure of a ‘non-simple’ liquid or liquid crystal, no matter how complex its con- 
stituent molecules. A measure for the ‘complexity’ of a molecule is the number of its 
internal degrees of freedom. The entropy associated with these degrees of freedom 
becomes increasingly important as the constituent molecules grow more complex. In 
the limit of a long polymer chain one may even, to  a first approximation, ignore the 
excluded-volume effects , but never the conformational entropy. 

This feature of complex molecules is, of course, well known and it poses a 
formidable challenge to  computer simulators: it is essential that  a numerical study 
of long-chain molecules probes a representative sample of all accessible molecular con- 
formations and positions. Much attention has therefore been paid to  the development 
of efficient numerical schemes to  sample polymer conformations. The recent review 
by Kremer and Binder [5 ]  gives an excellent account of Monte Carlo schemes to  study 
lattice models of macromolecules. Most of the Monte Carlo techniques to sample 
chain conformations described in that  review are based on some kind of local rule 
t o  rotate, change or break-and-remake bonds between polymer units. Although the 
existing techniques are quite sophisticated, the local nature of the algorithm results in 
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slow global equilibration. Global equilibration may require large-scale conformational 
changes of the molecules and, in the case of mixtures, appreciable changes in the local 
composition of the mixture. Such numerical problems are not limited to  Monte Carlo 
simulations. In fact, although molecular dynamics simulations [6] have the advantage 
that they allow the molecules t o  perform collective motions in a natural fashion, the 
timescale for such diffusive motion is still very long. 

The  aim of the present paper is to  show that a radically different approach to  Monte 
Carlo sampling of polymers is possible, using techniques that have been developed in a 
very different context, namely for the study of tagged-particle velocity autocorrelation 
functions in lattice gases [7-91. The basic idea behind these algorithms is that a 
‘brute-force’ sampling of random walks on a lattice is not only very time-consuming 
but,  more importantly, often yields much more information than needed. To give a 
specific example: if we wish to  compute the excess chemical potential of a polymer in a 
colloidal dispersion, we need to know the total number of polymer conformations that 
do not intersect a colloidal particle. However, ‘brute-force’ sampling gives us much 
more than that:  from it,  we could, in principle, deduce the full n-body distribution 
function of a n-unit polymer. The ‘moment-propagation’ methods of [7-91 allow us 
to compute certain averages of the n-body distribution function directly, without 
attempting to  compute the function it.self. This approach results in a very appreciable 
gain in computing speed: for instance, in the case of velocity autocorrelation functions 
in lattice gases, the method has resulted in a speed-up that varied between lo6 and 
l O 1 O  [7,8]. 

Below, I show how these methods, which were developed to study extremely simple 
fluids, can help us with the study of a very complex fluid, namely a polymer system. To 
this end, let us consider a specific example of some practical interest, namely a system 
of ideal non-interacting polymers in the external potential provided by a dispersion of 
‘ hard-sphere’ colloidal particles. 

Without much loss of generality, we can assume that the ideal polymer conforma- 
tions correspond to  random walks on a lattice. Suppose that every lattice site has 
b neighbours, that  the polymer consists of p segments and that there are N lattice 
sites. Clearly, for an ideal polymer in the absence of any obstacles, the total number 
of allowed conformations is Rid E N x bP. If obstacles are present, some random 
walks are blocked, and the total number of allowed conformations, R,, is less than 
R,d. The ‘brute-force’ method to determine the ratio RT/R,d would be to  attempt a 
large number of insertions of chains with arbitrary conformation at  random points on 
the lattice. The  ratio of the number of ‘accepted’ trial moves to  the total number of 
attempted insertions can be used t o  compute the excess chemical potential of an ideal 
polymer chain in this system: 

Clexcess = -kBT log(‘acceptance> (1) 

This is the usual ‘Widom’ expression for the excess chemical potential [lo]. However, 
unless the density of obstacles is quite low, the relative statistical error in the insertion 
probability will be quite large (see [ l l ] ) .  Next, consider the ‘moment-propagation’ ap- 
proach. To this end, let us first compute all N Boltzmann factors associated with 
the insertion of a point particle a t  any lattice site. Clearly, the sum of these Boltz- 
mann factors is simply the partition function of a point particle on a lattice in an 
external potential. Let us denote the Boltzmann factor associated with site i as 
f j 0 )  E exp(-u(ri)/kBT). The partition function for a one-segment polymer (2 points) 
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is computed as follows. Starting from site i, we have b ways t o  grow one segment. 
But all b directions will, in general, have different Boltzmann weights f:'), where j 
denotes one of the nearest neighbours of i .  The total Boltzmann weight associated 
with the addition of a one-segment polymer at  site i is then: 

where the sum runs over the nearest neighbours of i. The partition function of a 
one-segment polymer on a lattice is then simply: 

N 

(where, for convenience, I have assumed that the polymer 'head' and 'tail' are dis- 
tinguishable). Repeating the same argument p times, it is clear that  the Boltzmann 
factor associated with all possible conformations of a psegment polymer starting at  
site i is given by: 

And the total partition function is given by: 

N 

The important fact to  note is that the computation of Z p ,  a quantity that depends 
on N x bP conformations, requires only p iterations of b x N local 'propagations' of 
real numbers. For a fixed external potential, the partition function thus computed is 
exact.  

In a practical situation, as with the addition of polymer to  a colloidal dispersion, 
the external potential is not fixed, but depends on the (continuous) coordinates of 
all A4 colloidal particles, { T ~ } .  Hence, the total partition function of the polymer 
also depends on these coordinates: Z p  = Z,(T"). As a simple demonstration of the 
approach sketched above, figure 1 shows the result of a computation of the excess 
chemical potential of an ideal polymer with a number of segments varying from 0 to 
100, in a system of 108 hard spheres a t  a density that corresponds to  60% of regular 
close packing. The hard-sphere coordinates were generated in a standard Monte Carlo 
procedure. Polymer insertion probabilities (i.e. Z F / (  N b P ) )  were computed every 500 
MC cycles, during a run of some 4 x lo4 cycles. 

The approach sketched above is not limited to  completely random polymer confor- 
mations. In fact, i t  is simple to  exclude 180' reversals or to  account for the different 
weight of gauche and trans conformations [12]. An interesting application of the above 
scheme is that i t  allows us to  perform simulations of a polymer system at constant  
o smot i c  pressure,  II. This corresponds to  a very common experimental condition. To 
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Figure 1. Excess chemical potential of an ideal polymer with 0-100 segments in a 
fluid of hard spheres a t  a density corresponding to 60% of close packing (see text). 
The statistical errors are smaller than the symbols. 

see how this can be achieved, let us consider the partition function of n ideal polymers 
of length p in an external field. Clearly, 

2 ; q . M )  = [ z p ( T M ) ] n / n !  (6) 

where Z( ' )  (Z ( " ) )  denotes the partition function for one ( n )  polymer(s). Now let us 
transform to an ensemble where the polymer chemical potential, p ,  is held constant. 
To be specific, let us again consider the polymer colloid mixture. For convenience, 
we assume that the total number of colloid particles is held constant. The potential 
energy function that  describes the direct interaction between the colloid particles is 
denoted by U ( r M ) .  The partition function for this constant M ,  V, T ,  II ensemble is 

03 

2 = constant x d r M  exp(-U(r')/kBT) exp(n~/kBT)[2;')(r")In/n!. (7) J n=O 

Clearly, the summation in equation (7) yields an exponential, exp(zZ$"(rM)), where 
we have used the shorthand notation exp(p/kBT) E z .  Equation (7) is the starting 
point for Monte Carlo simulations a t  constant II [13]. In such simulations, the relative 
probability of different colloid configurations is proportional to  

Note that Z$'), which describes the polymer-induced interaction between colloidal 
particles, can be calculated exactly for every colloid configuration. Of course, such 
constant-II simulations are not limited to  polymer colloid mixtures. Another interest- 
ing application is the simulation of polymer-induced forces between two surfaces. It 
is worth pointing out that  in constant-II simulations we have no direct knowledge of 
the actual polymer positions and conformations (although some averages can be com- 
puted easily). This demonstrates clearly that great gains in computational efficiency 
can be made by throwing away 'irrelevant' information. 



Les extrkmes se touchent SA269 

Thus far, I have only discussed non-interacting polymers. However, the techniques 
described above can be used t o  perform very efficient sampling of the conformations of 
mutually interacting, self-avoiding polymers [12]. It should be stressed that ,  although 
the techniques described in this paper require that the polymer backbone should fit 
on a lattice, the actual polymer position and, surprisingly, even orientation can be 
described by continuous coordinates. For the simulation of more realistic models for 
chain molecules, the present approach can be conveniently combined with the ‘config- 
urational bias’ Monte Carlo scheme that was recently developed by Siepmann [ll].  

In summary: a numerical technique that was used to  study long-time tails in 
extremely simple fluids (namely lattice-gas models) has been modified to  speed up the 
simulation of extremely complex fluids. This opens the way to  the numerical study of 
a class of problems that  have, thus far, defied simulation. 
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